Package: spm 1.2.2
spm: Spatial Predictive Modeling
Introduction to some novel accurate hybrid methods of geostatistical and machine learning methods for spatial predictive modelling. It contains two commonly used geostatistical methods, two machine learning methods, four hybrid methods and two averaging methods. For each method, two functions are provided. One function is for assessing the predictive errors and accuracy of the method based on cross-validation. The other one is for generating spatial predictions using the method. For details please see: Li, J., Potter, A., Huang, Z., Daniell, J. J. and Heap, A. (2010) <https:www.ga.gov.au/metadata-gateway/metadata/record/gcat_71407> Li, J., Heap, A. D., Potter, A., Huang, Z. and Daniell, J. (2011) <doi:10.1016/j.csr.2011.05.015> Li, J., Heap, A. D., Potter, A. and Daniell, J. (2011) <doi:10.1016/j.envsoft.2011.07.004> Li, J., Potter, A., Huang, Z. and Heap, A. (2012) <https:www.ga.gov.au/metadata-gateway/metadata/record/74030>.
Authors:
spm_1.2.2.tar.gz
spm_1.2.2.zip(r-4.5)spm_1.2.2.zip(r-4.4)spm_1.2.2.zip(r-4.3)
spm_1.2.2.tgz(r-4.4-any)spm_1.2.2.tgz(r-4.3-any)
spm_1.2.2.tar.gz(r-4.5-noble)spm_1.2.2.tar.gz(r-4.4-noble)
spm_1.2.2.tgz(r-4.4-emscripten)spm_1.2.2.tgz(r-4.3-emscripten)
spm.pdf |spm.html✨
spm/json (API)
# Install 'spm' in R: |
install.packages('spm', repos = c('https://jinli22.r-universe.dev', 'https://cloud.r-project.org')) |
- hard - A dataset of seabed hardness in the eastern Joseph Bonaparte Golf, northern Australia marine margin
- petrel - A dataset of seabed sediments in the Petrel sub-basin in Australia Exclusive Economic Zone
- petrel.grid - A dataset of grids for producing spatial predictions of seabed sediment content in the Petrel sub-basin in Australia Exclusive Economic Zone
- sponge - A dataset of sponge species richness in the Timor Sea region, northern Australia marine margin
- sponge.grid - A dataset of predictors for generating sponge species richness in a selected region in the Timor Sea region, northern Australia marine margin
- sw - A dataset of grids for producing spatial predictions of seabed mud content in the southwest Australia Exclusive Economic Zone
- swmud - A dataset of seabed mud content in the southwest Australia Exclusive Economic Zone
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:438736da4a. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | NOTE | Oct 27 2024 |
R-4.5-linux | NOTE | Oct 27 2024 |
R-4.4-win | NOTE | Oct 27 2024 |
R-4.4-mac | NOTE | Oct 27 2024 |
R-4.3-win | NOTE | Oct 27 2024 |
R-4.3-mac | NOTE | Oct 27 2024 |
Exports:avigbmcvgbmidwcvgbmidwpredgbmokcvgbmokgbmidwcvgbmokgbmidwpredgbmokpredgbmpredidwcvidwpredokcvokpredpred.accRFcvrfidwcvrfidwpredrfokcvrfokpredrfokrfidwcvrfokrfidwpredrfpredrgcvrgidwcvrgidwpredrgokcvrgokpredrgokrgidwcvrgokrgidwpredrgpredrvitovecvvecv
Dependencies:abindbiomod2classclassIntclicodetoolscolorspaceDBIdplyre1071fansifarverFNNforeachgbmgenericsggplot2gluegstatgtableintervalsisobanditeratorsKernSmoothlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrPresenceAbsencepROCproxypsyR6randomForestrangerRColorBrewerRcppRcppEigenreshapereshape2rlangrparts2scalessfsftimespspacetimestarsstringistringrsurvivalterratibbletidyselectunitsutf8vctrsviridisLitewithrwkxtszoo